CONTACT WAY联系方式

地址: 北京市丰台区科兴路9号国际企业孵化中心401室
电话: 010-51668388
邮箱: service@premedlab.com

首页 | 耗材 | PetakaG3 系列细胞培养工具

Lipidure®-COAT培养板

产品应用

Lipidure®-COAT低黏附培养板——高效球体培养工具

单球体形成低黏附解决方案

球体细胞培养通过使用低附着的细胞培养条件下实现,基于细胞基质、细胞与细胞之间的相互作用下,细胞聚集自发形成的。Lipidure-COAT 培养板和培养皿是一系列球体形成的方案,用脂质涂层提供一个低黏附的多孔细胞培养板,用于单个球体的形成;用脂质涂层提供一个低黏附的细胞培养民,用于提供足量样本的试验,如Western blotting或基因表达谱试验。

特点:

多细胞球体形成包括:乳腺球体、神经球体、肿瘤球体、胚胎体

由于细胞类实验、Western Blot和基因表达

使用多板形式易于拓展

应用:

•低细胞覆着特性 •胚胎体 •肿瘤球体 •神经球体

细胞类型

以下球体形成已经证实:

人ES,小鼠ES,人iPS,小鼠iPS, NIH3T3,pre-adipocytes(前成脂肪细胞),HepG2 和癌细胞系。

单个中央位置球体的形成

步骤1:多层培养物;       步骤2:单孔细胞;        步骤3:细胞聚集;       步骤4:球体形成

订购信息

货号 描述 规格
AMS.51011615 Lipidure-Coat Dish A-90D (90mm Dish) 20 pieces
AMS.51011610 Lipidure-Coat Plate A-U96 (96 wells U-bottom plate) 7 pieces
AMS.51011611 Lipidure-Coat Plate A-F96 (96 wells Flat-bottom plate) 7 pieces
AMS.51011612 Lipidure-Coat Plate A-V96 (96 wells V-bottom plate) 7 pieces
AMS.51011617 Lipidure-Coat Multi-Dish A-6MD (Multi Dish 6 wells) 7 pieces
AMS.51011618 Lipidure-Coat Multi-Dish A-12MD (Multi Dish 12 wells) 7 pieces
AMS.51011619 Lipidure-Coat Multi-Dish A-24MD (Multi Dish 24 wells) 7 pieces
AMS.51011614 Lipidure-Coat Dish A-60D (60mm Dish) 20 pieces
AMS.52000011GB1G Lipidure-CM5206 (White powder), 1g 1 g
AMS.52000012GB100G Lipidure-CM5206 (White powder), 100g 100 g
AMS.52000012GB10G Lipidure-CM5206 (White powder), 10g 10 g

试验数据 神经球体

肿瘤球体

胚胎体 Lipidure®-COAT培养板在抗癌药物中的球体形成和应用

Hep G2球体成型5天。

WST试验对Hep G2球体的细胞活力测定(7天,有/无Mitomycin-C)

产品对比

Lipidure-COAT 孔中单个球体形成, 而在竞争对手中有众多微球体。该现象表明竞争对手的“低黏附”的细胞黏附表面。

参考文献

1,Yang KC, et al. Investigating the suspension culture on aggregation and function of mouse pancreatic β cells. J Biomed Mater Res A. 2013. 101:2273-82.

2,Okumura N et al., β-Catenin Functions Pleiotropically in Differentiation and Tumorigenesis in Mouse Embryo-Derived Stem Cells. PLoS One. 2013. 8:e63265.

3,Steinkamp MP et al., Ovarian Tumor Attachment, Invasion, and Vascularization Reflect Unique Microenvironments in the Peritoneum: Insights from Xenograft and Mathematical Models. Front Oncol. 2013; 3: 97.

4,Chen YJ et al., Use of "MGE enhancers" for labeling and selection of embryonic stem cell-derived medial ganglionic eminence (MGE) progenitors and neurons. PLoS One. 2013. 8:e61956.

5,Nasu M et al., Robust Formation and Maintenance of Continuous Stratified Cortical Neuroepithelium by Laminin-Containing Matrix in Mouse ES Cell Culture. PLoS One. 2012. 7:e53024.

6,Koehler et al. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature. 2013. doi: 10.1038/nature12298. [Epub ahead of print].

7,Eiraku et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011. 472:51–56.

8,Yasuda et al. Development of cystic embryoid bodies with visceral yolk-sac-like structures from mouse embryonic stem cells using low-adherence 96-well plate. J Biosci Bioeng. 2009. 107:442-6.

9,Mogi et al. The method of mouse embryoid body establishment affects structure and developmental gene expression. Tissue Cell. 2009. 41:79-84.

10,Eiraku et al. Self organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008. 3:519-32.

11,Wataya et al., Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. PNAS 2008. 105:11796-11801.